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Outline

•Background of queuing model
•Robust routing for network systems
•Application to district routing
•Secure routing for parallel queues
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Queuing model

•What it captures: queuing due to random arrival and/or random 
service time
•What it not captures: demand & capacity fluctuations
• Study topics: routing, sequencing, service rate control, 

admission control
• Applications: transportation, manufacturing networks 

(production lines), communication/computer networks
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Robust routing for network systems

• In practical settings, model data may be
• unavailable
• hard to estimate
• vary over time

•Suppose that we know the topology of a network, but 
do not know the demand and supply/capacity
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Learning-based vs. robust control

•How to make decisions in an unknown environment?
•Solution 1: learn the environment from observation
• learning-based adaptive control
• efficient & smart
• requires sufficient data
• vulnerable to unhealthy data

•Solution 2: independent of environment parameters
• robust control
• easy & robust
• guarantee stability but not efficiency
• resist modeling error and/or non-stationary environment

•Solution 2 motivates model-based independent control
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Formulation

•Multi-class Jackson queuing network with with Poisson 
arrivals & exponential service times
•Multiple origins, multiple destinations, acyclic
•Real-time OD-specific queue sizes can be observed
•Control actions: routing, sequencing, and holding
•Arrival and service rates unknown
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Join the shortest queue

•Simple case: parallel queues
• Intuitive routing policy: join the shortest queue (JSQ)
• route the arrival to the shortest queue
• ties are broken uniformly at random

•Standard results:
• System is stable if and only if arrival rate < total service rate
• Optimal for symmetric servers

•MDI: no info about arrival/service rates are needed
•Throughput-maximizing: if demand < capacity, then 

system is stable

3/29/21 Qian Xie (NYU) 7



•Can we extend JSQ to networks? No!

•By symmetry & Burke’s theorem, departure process 
from servers 1 & 3 are both Poisson of rate 0.5
•However, 0.5 exceeds the service rate of server 2 (0.1)
•Thus, the network is unstable!

JSQ fails for networks
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Solution: join the shortest route

•Why JSQ fails?
• Server 2 will be congested, but such information is not used at the 

origin

• To fix this, consider the total queue sizes on each route:
• Join queue 1 if 𝑥1 + 𝑥2 < 𝑥3 + 𝑥4
• Join queue 3 if 𝑥1 + 𝑥2 > 𝑥3 + 𝑥4
• Ties broken uniformly at random

• Improve JSQ to JSR
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•What if the network is not parallel/serial?
•Consider expanded network

•Then the previous route-sum is not easy to extend.
•We consider an alternative:
•𝑦* = max{𝑥*0,

*
2
(𝑥*0 + 𝑥2)}, 𝑦2 = max{𝑥*6,

*
2
(𝑥*6 +

𝑥7),
*
7
(𝑥*6 + 𝑥7 + 𝑥80)}, 𝑦7 = max{𝑥9,

*
2
(𝑥9 + 𝑥86)}

How about more complex networks?
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Multi-class centralized control

• Join the shortest ”route”: min< 𝑦<
•This applies to multi-class (multi-OD) traffic
•Centralized control: requires global information
• JSR is model-data independent
• Joint work with Li Jin (submitted to IEEE-TCNS)

3/29/21 Qian Xie (NYU) 11



Single-class decentralized control

•How about decentralized setting?
• The decision at each server is based on the local traffic 

information
•Why JSQ does not work for networks?
• Congestion info cannot propagate to upstream servers

•Solution: artificial holding to propagate such info
• keep upstream queue size > downstream queue size
• e.g. subserver 1b is not allowed to discharge if 𝑥*6 ≤ 𝑥7

• JSQ with artificial spillback!
• Joint work with Li Jin (submitted to IEEE-TCNS)
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Application to district routing

Find routes for all CAVs in a district

1. Objective: minimize the average traveling time of CAVs

2. Actions: assigning routes to CAVs

3. Constraints: 
a. Physical constraints/sequencing in the driving environment

(AIM, CAV moving…)

b. CAVs has their own source and destination
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Training of RL

• Joint work with NYU ECE High Speed Networking Lab
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Security risks in cyber-physical systems

• Cyber-physical systems rely on data flowing through the network
• Cyber components are vulnerable to malicious attacks that bring 

security risks
• How does data quality/integrity impact performance?
• How cyber security vulnerabilities impact physical system?
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Malicious behaviors in IoV

• In the Internet of Vehicles (IoV), vehicles typically make 
decisions based on real-time routing guidance services
• The info provided by such services can be faulty, and the misled 

travelers may suffer extra travel times
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Security vulnerabilities in ITSs
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Research questions

Modeling & analysis
• How to model stochastic & recurrent attacks?
• How to quantify attacker’s incentive?
• How to quantify the impact due to attacks?
• How to evaluate security risk?

Resource allocation
• How to allocate security resources, including redundant 

components, diagnosis mechanisms, etc.?

Control design
• How to design traffic control strategies that are less sensitive to 

various types of attacks?
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Queuing model

Basic model
• Poisson arrivals of rate 𝜆
• Parallel queuing servers with 

service rate 𝜇
• State: vector of queues 

𝑋 𝑡 = [𝑋* 𝑡 , 𝑋2 𝑡 , … , 𝑋D(𝑡)]
• Dynamic routing: optimal control strategy to route jobs (e.g. 

vehicles, components, data packets)
• Provably optimal routing policy: send-to-shortest-queue 

[Ephremides, Varaiya & Walrand 80]
• Note: implementing the optimal routing policy requires perfect

observation of system state 𝑋(𝑡)
• If observation imperfect, then closed-loop can be worse than 

open-loop (e.g. round robin or Bernoulli routing)
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Failure (attacker) model

• Denial-of-service (DoS):
• Attacker compromise sensing
• Operator loses observation temporarily
• With constant probability 𝑎, a job does not go to the shortest queue (e.g. 

join-a-random-queue)

• Spoofing:
• Attacker modifies sensing
• Operator makes decision according to manipulated sensing
• With state-dependent probability 𝛼(𝑥), an attacker manipulates the 

routing (e.g. send-to-longest-queue)

• Objective: balance queuing cost and attacking cost
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Defender model

• Decision making:
• With probability 𝛽(𝑥), the system operator (defender) secures the routing 

(i.e. ensuring correct routing)

• Objective: balance queuing cost and defending cost
• Routing is compromised if and only if attacked & not defended
• i.e. 𝛼 𝑥 = 1 & 𝛽 𝑥 = 0 or 𝛼 𝑥 1 − 𝛽 𝑥 = 1
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Defending strategy (constant DoS probability) 

Theorem 3. Consider a two-queue system with a constant DoS 
probability. The optimal defending strategy 𝛽∗(𝑥) has the 
following properties:
• Defender either defends or does not defend (no probabilistic 

defense), i.e. 𝛽∗ 𝑥 ∈ {0,1}
• No need to defend (𝛽∗ = 0) when 𝑥* = 𝑥2
• Fixing 𝑥* + 𝑥2, defend for larger 𝑥* − 𝑥2

𝑥* − 𝑥2 ↑ ⇒ 𝛽∗ 𝑥 ↑
• Fixing 𝑥* − 𝑥2 , defend for smaller 𝑥* + 𝑥2

𝑥* + 𝑥2 ↑ ⇒ 𝛽∗ 𝑥 ↑

Proof idea: analyze properties of cumulative discounted cost using 
Hamiltonian Jacobian equation and induction on value iteration.
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Infinite-horizon, dynamic, two-player zero-sum stochastic game
Markovian, state-dependent policies
Definition 2. The optimal attacking (resp. defending) strategy 𝛼∗
(resp. 𝛽∗) satisfies that for any state 𝑥 ∈ ℤQRS ,

𝛼∗(𝑥) = argmaxV 𝑉X∗ 𝑥, 𝛽∗ ,
𝛽∗(𝑥) = argminY 𝑉Z∗ 𝑥, 𝛼∗ .

The value of the attacker/defender is 𝑉X∗ 𝑥, 𝛽∗ / 𝑉Z∗ 𝑥, 𝛼∗ . In 
particular, (𝛼∗, 𝛽∗) is a Markovian perfect equilibrium.
Remark. According to Shapley’s extension on minimax theorem,

𝑉X∗ 𝑥, 𝛽∗ = 𝑉Z∗ 𝑥, 𝛼∗ = 𝑉∗(𝑥)
Question. Existence of MPE? (Countable infinite state space!)
Joint work with Zhengyuan Zhou (NYU Stern) and Li Jin

Security game
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