Robust and Secure Routing For Queuing Networks and Internet of Vehicles

Qian Xie <u>qianxie@nyu.edu</u>

July 10, 2020

Outline

- Background of queuing model
- Robust routing for network systems
- Application to district routing
- Secure routing for parallel queues

Queuing model

- What it captures: queuing due to random arrival and/or random service time
- What it not captures: demand & capacity fluctuations
- Study topics: routing, sequencing, service rate control, admission control
- Applications: transportation, manufacturing networks (production lines), communication/computer networks

Robust routing for network systems

- In practical settings, model data may be
 - unavailable
 - hard to estimate
 - vary over time
- Suppose that we know the topology of a network, but do not know the demand and supply/capacity

Learning-based vs. robust control

- How to make decisions in an unknown environment?
- Solution 1: learn the environment from observation
 - learning-based adaptive control
 - efficient & smart
 - requires sufficient data
 - vulnerable to unhealthy data
- Solution 2: independent of environment parameters
 - robust control
 - easy & robust
 - guarantee stability but not efficiency
 - resist modeling error and/or non-stationary environment
- Solution 2 motivates model-based independent control

Formulation

- Multi-class Jackson queuing network with with Poisson arrivals & exponential service times
- Multiple origins, multiple destinations, acyclic
- Real-time OD-specific queue sizes can be observed
- Control actions: routing, sequencing, and holding
- Arrival and service rates unknown

Join the shortest queue

- Simple case: parallel queues
- Intuitive routing policy: join the shortest queue (JSQ)
 - route the arrival to the shortest queue
 - ties are broken uniformly at random
- Standard results:
 - System is stable if and only if arrival rate < total service rate
 - Optimal for symmetric servers
- MDI: no info about arrival/service rates are needed
- Throughput-maximizing: if demand < capacity, then system is stable

JSQ fails for networks

• Can we extend JSQ to networks? No!

- By symmetry & Burke's theorem, departure process from servers 1 & 3 are both Poisson of rate 0.5
- However, 0.5 exceeds the service rate of server 2 (0.1)
- Thus, the network is unstable!

Solution: join the shortest route

- Why JSQ fails?
 - Server 2 will be congested, but such information is not used at the

- To fix this, consider the total queue sizes on each route:
 - Join queue 1 if $\overline{x}_1 + \overline{x}_2 < \overline{x}_3 + \overline{x}_4$
 - Join queue 3 if $\overline{x}_1 + \overline{x}_2 > \overline{x}_3 + \overline{x}_4$
 - Ties broken uniformly at random
- Improve JSQ to JSR

How about more complex networks?

• What if the network is not parallel/serial?

- Then the previous route-sum is not easy to extend.
- We consider an alternative:

•
$$y_1 = \max\{x_{1a}, \frac{1}{2}(x_{1a} + x_2)\}, y_2 = \max\{x_{1b}, \frac{1}{2}(x_{1b} + x_3), \frac{1}{3}(x_{1b} + x_3 + x_{5a})\}, y_3 = \max\{x_4, \frac{1}{2}(x_4 + x_{5b})\}$$

Multi-class centralized control

- Join the shortest "route": $\min_k y_k$
- This applies to multi-class (multi-OD) traffic
- Centralized control: requires global information
- JSR is model-data independent
- Joint work with Li Jin (submitted to IEEE-TCNS)

Single-class decentralized control

- How about decentralized setting?
 - The decision at each server is based on the local traffic information
- Why JSQ does not work for networks?
 - Congestion info cannot propagate to upstream servers
- Solution: artificial holding to propagate such info
 - keep upstream queue size > downstream queue size
 - e.g. subserver 1b is not allowed to discharge if $x_{1b} \leq x_3$
- JSQ with artificial spillback!
- Joint work with Li Jin (submitted to IEEE-TCNS)

Application to district routing

Find routes for all CAVs in a district

- **1. Objective**: minimize the average traveling time of CAVs
- 2. Actions: assigning routes to CAVs
- 3. Constraints:
 - a. Physical constraints/sequencing in the driving environment (AIM, CAV moving...)
 - b. CAVs has their own source and destination

Training of RL

• Joint work with NYU ECE High Speed Networking Lab

Security risks in cyber-physical systems

- Cyber-physical systems rely on data flowing through the network
- Cyber components are vulnerable to malicious attacks that bring security risks
- How does data quality/integrity impact performance?
- How cyber security vulnerabilities impact physical system?

Malicious behaviors in IoV

- In the Internet of Vehicles (IoV), vehicles typically make decisions based on real-time routing guidance services
- The info provided by such services can be faulty, and the misled travelers may suffer extra travel times

BUSINESSINSIDER.COM

An artist wheeled 99 smartphones around in a wagon to create fake traffic jams on Google Maps

Security vulnerabilities in ITSs

Research questions

Modeling & analysis

- How to model stochastic & recurrent attacks?
- How to quantify attacker's incentive?
- How to quantify the impact due to attacks?
- How to evaluate security risk?

Resource allocation

• How to allocate security resources, including redundant components, diagnosis mechanisms, etc.?

Control design

 How to design traffic control strategies that are less sensitive to various types of attacks?

Queuing model

Basic model

- Poisson arrivals of rate λ
- \bullet Parallel queuing servers with service rate μ
- State: vector of queues

$$X(t) = [X_1(t), X_2(t), \dots, X_K(t)]$$

- Dynamic routing: optimal control strategy to route jobs (e.g. vehicles, components, data packets)
- Provably optimal routing policy: send-to-shortest-queue [Ephremides, Varaiya & Walrand 80]
- Note: implementing the optimal routing policy requires perfect observation of system state X(t)
- If observation imperfect, then closed-loop can be worse than open-loop (e.g. round robin or Bernoulli routing)

Failure (attacker) model

- Denial-of-service (DoS):
 - Attacker compromise sensing
 - Operator loses observation temporarily
 - With constant probability *a*, a job does not go to the shortest queue (e.g. join-a-random-queue)
- Spoofing:
 - Attacker modifies sensing
 - Operator makes decision according to manipulated sensing
 - With state-dependent probability $\alpha(x)$, an attacker manipulates the routing (e.g. send-to-longest-queue)
- Objective: balance queuing cost and attacking cost

Defender model

- Decision making:
 - With probability β(x), the system operator (defender) secures the routing (i.e. ensuring correct routing)
- Objective: balance queuing cost and defending cost
- Routing is compromised if and only if attacked & not defended
 - i.e. $\alpha(x) = 1 \& \beta(x) = 0 \text{ or } \alpha(x) (1 \beta(x)) = 1$

Defending strategy (constant DoS probability)

Theorem 3. Consider a two-queue system with a constant DoS probability. The optimal defending strategy $\beta^*(x)$ has the following properties:

- Defender either defends or does not defend (no probabilistic defense), i.e. β^{*}(x) ∈ {0,1}
- No need to defend ($\beta^* = 0$) when $x_1 = x_2$
- Fixing $x_1 + x_2$, defend for larger $|x_1 x_2|$ $|x_1 - x_2| \uparrow \Rightarrow \beta^*(x) \uparrow$
- Fixing $|x_1 x_2|$, defend for smaller $x_1 + x_2$ $x_1 + x_2 \uparrow \Rightarrow \beta^*(x) \uparrow$

Proof idea: analyze properties of cumulative discounted cost using Hamiltonian Jacobian equation and induction on value iteration.

Security game

Infinite-horizon, dynamic, two-player zero-sum stochastic game Markovian, state-dependent policies

Definition 2. The optimal attacking (resp. defending) strategy α^* (resp. β^*) satisfies that for any state $x \in \mathbb{Z}_{\geq 0}^n$,

 $\alpha^*(x) = \operatorname{argmax}_{\alpha} V_A^*(x, \beta^*),$ $\beta^*(x) = \operatorname{argmin}_{\beta} V_B^*(x, \alpha^*).$

The value of the attacker/defender is $V_A^*(x, \beta^*) / V_B^*(x, \alpha^*)$. In particular, (α^*, β^*) is a Markovian perfect equilibrium.

Remark. According to Shapley's extension on minimax theorem, $V_A^*(x, \beta^*) = V_B^*(x, \alpha^*) = V^*(x)$

Question. Existence of MPE? (Countable infinite state space!) Joint work with Zhengyuan Zhou (NYU Stern) and Li Jin